home *** CD-ROM | disk | FTP | other *** search
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 1
-
- +-----------------+-----------------+-----------------+-----------------+
- |TYPE |SIMPLE |3d VECTOR |COMPLEX |
- |PRECISION |DOUBLE |DOUBLE |DOUBLE |
- |RETURNS |DOUBLE |VRect |XRect |
- +-----------------+-----------------+-----------------+-----------------+
-
- +-----------------------------------------------------------------------+
- |TRIGINOMETRIC ROUTINES |
- +-----------------+-----------------+-----------------+-----------------+
- |ArcCosine |ACOS# 2 | | |
- |ArcSine |ASIN# 2 | | |
- |ArcTangent |ATAN2# 2 | | |
- |Triangle Solution|TriangleSolve 3 | | |
- +-----------------+-----------------+-----------------+-----------------+
-
- +-----------------------------------------------------------------------+
- |TRANSLATION ROUTINES |
- +-----------------+-----------------+-----------------+-----------------+
- |ConvertFromPolar | | |XCnvP 8 |
- |ConvertFromRect | | |XCnvR 8 |
- |Magnitude | | |XMag# 8 |
- |Angle | | |XAng# 8 |
- |Real | | |XReal# 9 |
- |Imaginary | | |XImag# 9 |
- |Fmt As Polar Str | | |XFmtP$ 9 |
- |Fmt As Rect Str | |VFmtR$ 7 |XFmtR$ 9 |
- +-----------------+-----------------+-----------------+-----------------+
-
- +-----------------------------------------------------------------------+
- |ARITHMETIC ROUTINES |
- +-----------------+-----------------+-----------------+-----------------+
- |ADDITION |+ |VAdd 7 |XAdd 10 |
- |SUBTRACTION |- |VSub 7 |XSub 10 |
- |MULTIPLICATION |* |VmltX 7 |XMlt 10 |
- | | |VMltD# 7 | |
- |DIVISION |/ | |XDiv 10 |
- |POWERS & ROOTS |^ | |XPwr 10 |
- |CONJUGATE |na | |XCnj 11 |
- |INVERSE |1/X | |XInv 11 |
- +-----------------+-----------------+-----------------+-----------------+
-
- +-----------------------------------------------------------------------+
- |MATRIX OPERATIONS |
- +-----------------+-----------------+-----------------+-----------------+
- |Add |MtxAdd 4 | |XMtxAdd 12 |
- |Subtract |MtxSub 4 | |XMtxSub 12 |
- |Solve Simul Eq #1|MtxCoeff 4 | |XMtxCoeff 13 |
- |Solve Simul Eq #2|MtxCoeffa 5 | |XMtxCoeffa 13 |
- |Copy |MtxCopy 5 | |XMtxCopy 13 |
- |Determinant |MtxDet 5 | |XMtxDet 14 |
- |Invert |MtxInv 5 | |XMtxInv 14 |
- |Scaler Product |MtxMltS 6 | |XMtxMltS 14 |
- |Cross Product |MtxMltX 6 | |XMtxMltX 14 |
- +-----------------+-----------------+-----------------+-----------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 2
-
- +-----------------------------------------------------------------------+
- | DOUBLE PRECISION INVERSE TRIGINOMETRIC FUNCTIONS |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: ArcCosine |
- | Example: Theta# = ACOS#(x#) |
- | Parameters: -1 <= x# <=+1 |
- | Returns: Angle in Radians. 0 <= Theta <= Pi |
- | Note: Two Quadrants Only. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: ArcSine |
- | Example: Theta# = ASIN#(y#) |
- | Parameters: -1 <= y# <=+1 |
- | Returns: Angle in Radians. -Pi/2 <= Theta <= Pi/2 |
- | Note: Two Quadrants Only. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: ArcTangent |
- | Example: Theta# = ATAN2#(x#, y#) |
- | Parameters: 1. "x" axis value. |
- | 2. "y" axis value. |
- | Returns: Angle in Radians. 0 <= Theta <= 2*Pi |
- | Note: All Four Quadrants. if x=0, function will return a |
- | value of +Pi/2 or -Pi/2 depending upon the value of |
- | y#. |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 3
-
- +-----------------------------------------------------------------------+
- | DOUBLE PRECISION TRIANGLE SOLUTIONS |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Triangle Solution |
- | Example: TriangleSolve PType$,p1#,p2#,p3#,A#(),S#(),Sols% |
- | Parameters: 1. Problem Type String. Can Be any of the following: |
- | |
- | Problem Parm Parm Parm |
- | Type 1 is 2 is 3 is |
- | -------- ------ ------ ------ |
- | "SSS" Side-A Side-B Side-C |
- | "SAS" Side-A Angle-c Side-B |
- | "ASA" Angle-a Side-C Angle-b |
- | "AAS" Angle-a Angle-b Side-A |
- | "SSA" Side-A Side-B Angle-a |
- | |
- | 2. Parameter #1 (see chart) |
- | 3. Parameter #2 (see chart) |
- | 4. Parameter #3 (see chart) |
- | 5. One dimension Array, DIM A#(3), that will receive |
- | the calculated angles |
- | 6. One dimension Array, DIM S#(3), that will receive |
- | the calculated sides. |
- | 7. Returns 0 if there is no solution, 1 if there is 1 |
- | solution, or 2 if there are 2 solutions. ALSO.... Set |
- | parameter 7 to 2 to retreive the second solution. |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 4
-
- +-----------------------------------------------------------------------+
- | DOUBLE PRECISION MATRIX COMPUTATIONS |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Matrix Addition A+B=C |
- | Example: MtxAdd MtxErr%, A#(), B#(), C#() |
- | Parameters: 1. Returns Non-Zero Value if arrays are not |
- | compatible |
- | 2. Two Dimension Array. Input "A" |
- | 3. Two Dimension Array. Input "B" |
- | 4. Two Dimension Array. Resultant. |
- | Notes: Arrays must be defined prior to use. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Matrix Subtraction A-B=C |
- | Example: MtxSub MtxErr%, A#(), B#(), C#() |
- | Parameters: 1. Returns Non-Zero Value if arrays are not |
- | compatible |
- | 2. Two Dimension Array. Input "A" |
- | 3. Two Dimension Array. Input "B" |
- | 4. Two Dimension Array. Resultant. |
- | Notes: Arrays must be defined prior to use. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Linear System Solution #1 |
- | Example: MtxCoeff MtxErr%, Mtx#(), Vctr#(), Coeff#() |
- | Parameters: 1. Returns Non-Zero Value if arrays are not |
- | compatible or if matrix is singular. |
- | 2. Two Dimension Array. Input. Coefficients of the |
- | equations of the system. |
- | 3. One Dimension Array. Input. The column vector. |
- | 4. One Dimension Array. Output. Solution to the |
- | system of linear equations. |
- | Notes: Arrays must be defined prior to use. The original |
- | matrix is not altered. Array Mtx#() must be square |
- | and Vctr#() and Coeff#() must be the same size as one |
- | dimension as Mtx#(). ie n=3:DIM Mtx#(n,n), Vctr#(n), |
- | Coeff#(n) |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 5
-
- +-----------------------------------------------------------------------+
- | Subroutine: Linear System Solution #2 |
- | Example: MtxCoeffA MtxErr%, Mtx#() |
- | Parameters: 1. Returns Non-Zero Value if arrays are not |
- | compatible or if matrix is singular. |
- | 2. Two Dimension Array. Input. Coefficients of the |
- | equations of the system with the column vector entered|
- | into column n+1. The solution to the system of linear |
- | equations. is returned in column n+1. |
- | Notes: Array must be defined prior to use. The original |
- | matrix IS TRASHED !. This routine is faster than |
- | MtxCoeff because it makes no effort to preserve the |
- | original array or place the results in a seperate |
- | array. Array Mtx#() must be rectangular with one more |
- | column than rows n=3 : DIM Mtx#(n,n+1) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Duplicate An Array (Matrix) |
- | Example: MtxCopy MtxErr%, Src#(), Dst#() |
- | Parameters: 1. Returns Non-Zero Value if arrays are not |
- | compatible. |
- | 2. Two Dimensional Array. Source. |
- | 3. Two Dimensional Array. Destination. |
- | Notes: Arrays must be defined prior to use. They may be |
- | either square or rectangular. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Determinate of a Matrix. |
- | Example: Determinate# = MtxDet#(MtxErr%, Mtx#()) |
- | Parameters: 1. Returns Non-zero value if array is singular. |
- | 2. Two Dimensional Square Matrix Array. |
- | Returns: Determinate of the Matrix. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Invert Matrix |
- | Example: MtxInv MtxErr%, A#(), C#() |
- | Parameters: 1. Returns Non-zero value if array is singular. |
- | 2. Two Dimensional Matrix Array To Invert. |
- | 3. Two Dimensional Matrix Array To Receive Inverted |
- | Matrix |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 6
-
- +-----------------------------------------------------------------------+
- | Subroutine: Scalar Product of a Matrix |
- | Example: MtxMltS MtxErr%, A#(), B#, C#() |
- | Parameters: 1. Returns Non-zero value if arrays are incompatible. |
- | 2. Two Dimensional Matrix Array To Scale. |
- | 3. Scalar |
- | 4. Two Dimensional Matrix Array To Receive Scalar |
- | Product. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Cross Product of a Matrix |
- | Example: MtxMltX MtxErr%, A#(), B#(), C#() |
- | Parameters: 1. Returns Non-zero value if arrays are incompatible. |
- | 2. Two Dimensional Matrix Array. "A" |
- | 3. Two Dimensional Matrix Array. "B" |
- | 4. Two Dimensional Matrix Array To Receive Cross |
- | Product (AxB). |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 7
-
- +-----------------------------------------------------------------------+
- | THREE DIMENSIONAL VECTOR ARITHMETIC |
- +-----------------------------------------------------------------------+
- | TYPE VRect |
- | x AS DOUBLE |
- | y AS DOUBLE |
- | z AS DOUBLE |
- | END TYPE |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: 3d Vector Addition |
- | Example: VAdd Op1 AS VRect, Op2 AS VRect, Result AS VRect |
- | Parameters: 1. Input First Vector "A" |
- | 2. Input Second Vector "B" |
- | 3. Returns Sum of Vectors (A+B) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: 3d Vector Subtraction |
- | Example: VSub Op1 AS VRect, Op2 AS VRect, Result AS VRect |
- | Parameters: 1. Input First Vector "A" |
- | 2. Input Second Vector "B" |
- | 3. Returns Difference of Vectors (A+B) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: 3d Vector Cross Product |
- | Example: VMltX Op1 AS VRect, Op2 AS VRect, Result AS VRect |
- | Parameters: 1. Input First Vector "A" |
- | 2. Input Second Vector "B" |
- | 3. Returns Cross Product of Vectors (AxB) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: 3d Vector Dot Product |
- | Example: dp# = VMltD#(Op1 AS VRect, Op2 AS VRect) |
- | Parameters: 1. Input First Vector "A" |
- | 2. Input Second Vector "B" |
- | Returns: 3. Returns Dot Product of Vectors (A*B) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Format 3d Vector for Printing |
- | Example: PRINT VFmtR$(Op1 AS VRect) |
- | Parameters: 1. Vector |
- | Returns: 2. String similar to +45.7x-223.345y+.051z |
- | Notes: Crude, but helps debugging. |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 8
-
- +-----------------------------------------------------------------------+
- | COMPLEX NUMBER CONVERSION AND FORMATTING |
- +-----------------------------------------------------------------------+
- | TYPE XRect |
- | x AS DOUBLE |
- | y AS DOUBLE |
- | END TYPE |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Convert Complex Number in Polar Format to User Type. |
- | Example: XCnvP r#, t#, Result AS XRect |
- | Parameters: 1. Magnitude (radius) of number |
- | 2. Angle (theta) of number in radians |
- | 3. Returns number in User Type to be used in |
- | calculations. |
- | Notes: Can also be used for a quick and dirty polar to |
- | rectangular conversion. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Convert Complex Number in Rectangular Format to User |
- | Type. |
- | Example: XCnvR i#, j#, Result AS XRect |
- | Parameters: 1. Real portion of number |
- | 2. Imaginary portion of number |
- | 3. Returns number in User Type to be used in |
- | calculations. |
- | Notes: Provided only for consistancy. The user type is |
- | already in rectangular format. The same effect can be |
- | had by: Result.x = i# : Result.y = j# |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Find Angle of Complex Number |
- | Example: Degrees# = XAng#(Op1 AS XRect) * 180 / Pi |
- | Parameters: 1. Complex Number |
- | Returns: Angle of Complex Number (in radians) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Find Magnitude of Complex Number |
- | Example: Magnitude# = XMag#(Op1 AS XRect) |
- | Parameters: 1. Complex Number |
- | Returns: Magnitude of Complex Number |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 9
-
- +-----------------------------------------------------------------------+
- | Function: Find Real Portion of Complex Number |
- | Example: Real# = XReal#(Op1 AS XRect) |
- | Parameters: 1. Complex Number |
- | Returns: Imaginary Portion of Complex Number |
- | Note: Provided only for consistancy. The user type is |
- | already in rectangular format. The same effect can be |
- | had by: Real# = Op1.x |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Find Imaginary Portion of Complex Number |
- | Example: Unreal# = XImag#(Op1 AS XRect) |
- | Parameters: 1. Complex Number |
- | Returns: Imaginary Portion of Complex Number |
- | Note: Provided only for consistancy. The user type is |
- | already in rectangular format. The same effect can be |
- | had by: Unreal# = Op1.y |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Format Complex Number for Printing (polar format) |
- | Example: PRINT XFmtP$(Op1 AS XRect) |
- | Parameters: 1. Complex Number |
- | Returns: 2. String similar to +45.7<-223.345 Deg |
- | Notes: Crude, but helps debugging. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Function: Format Complex Number for Printing (rectangular |
- | format) |
- | Example: PRINT XFmtR$(Op1 AS XRect) |
- | Parameters: 1. Complex Number |
- | Returns: 2. String similar to +45.7-223.345j |
- | Notes: Crude, but helps debugging. |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 10
-
- +-----------------------------------------------------------------------+
- | COMPLEX NUMBER ARITHMETIC |
- +-----------------------------------------------------------------------+
- | TYPE XRect |
- | x AS DOUBLE |
- | y AS DOUBLE |
- | END TYPE |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Add Two Complex Numbers |
- | Example: XAdd Op1 AS XRect, Op2 AS XRect, Result AS XRect |
- | Parameters: 1. Complex Number "A" |
- | 2. Complex Number "B" |
- | 3. Returns Complex Number (A+B) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Subtract Two Complex Numbers |
- | Example: XSub Op1 AS XRect, Op2 AS XRect, Result AS XRect |
- | Parameters: 1. Complex Number "A" |
- | 2. Complex Number "B" |
- | 3. Returns Complex Number (A-B) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Multiply Two Complex Numbers |
- | Example: XMlt Op1 AS XRect, Op2 AS XRect, Result AS XRect |
- | Parameters: 1. Complex Number "A" |
- | 2. Complex Number "B" |
- | 3. Returns Complex Number (AxB) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Divide Two Complex Numbers |
- | Example: XDiv Op1 AS XRect, Op2 AS XRect, Result AS XRect |
- | Parameters: 1. Complex Number "A" |
- | 2. Complex Number "B" |
- | 3. Returns Complex Number (A/B) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Raise a Complex Number to a real power |
- | Example: XPwr Op1 AS XRect, Op2#, Result AS XRect |
- | Parameters: 1. Complex Number "A" |
- | 2. Real Number "B" |
- | 3. Returns Complex Number (A^B) |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 11
-
- +-----------------------------------------------------------------------+
- | Subroutine: Find the conjugate of a Complex Number |
- | Example: XCnj Op1 AS XRect, Result AS XRect |
- | Parameters: 1. Complex Number "A" |
- | 2. Returns Complex Number conj(A) |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Find the inverse of a Complex Number |
- | Example: XInv (Op1 AS XRect, Result AS XRect) |
- | Parameters: 1. Complex Number "A" |
- | 2. Returns Complex Number (1/A) |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 12
-
- +-----------------------------------------------------------------------+
- | COMPLEX MATRIX ARITHMETIC |
- +-----------------------------------------------------------------------+
- | TYPE XRect |
- | x AS DOUBLE |
- | y AS DOUBLE |
- | END TYPE |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Complex Number Matrix Addition (A+B=C) |
- | Example: XMtxAdd MErr%,A() AS XRect,B() AS XRect,C() AS XRect |
- | Parameters: 1. Returns Non-Zero Value if Complex Nbr Arrays are |
- | not compatible |
- | 2. Two Dimension Complex Nbr Array. Input "A" |
- | 3. Two Dimension Complex Nbr Array. Input "B" |
- | 4. Two Dimension Complex Nbr Array. Resultant. |
- | Notes: Arrays must be defined prior to use. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Complex Number Matrix Subtraction (A-B=C) |
- | Example: XMtxSub MErr%,A() AS XRect,B() AS XRect,C() AS XRect |
- | Parameters: 1. Returns Non-Zero Value if Complex Nbr Arrays are |
- | not compatible |
- | 2. Two Dimension Complex Nbr Array. Input "A" |
- | 3. Two Dimension Complex Nbr Array. Input "B" |
- | 4. Two Dimension Complex Nbr Array. Resultant. |
- | Notes: Arrays must be defined prior to use. |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 13
-
- +-----------------------------------------------------------------------+
- | Subroutine: Complex Number Linear System Solution #1 |
- | Example: XMtxCoeff MErr%,Mtx() AS XRect,Vctr() AS XRect,Coef() |
- | Parameters: 1. Returns Non-Zero Value if Complex Nbr Arrays are |
- | not compatible or if matrix is singular. |
- | 2. Two Dimension Complex Nbr Array. Input. |
- | Coefficients of the equations of the system. |
- | 3. One Dimension Complex Nbr Array. Input. The column |
- | vector. |
- | 4. One Dimension Complex Nbr Array. Output. Solution |
- | to the system of linear equations. |
- | Notes: Arrays must be defined prior to use. The original |
- | matrix is not altered. Complex Nbr Array Mtx() must |
- | be square and Vctr() and Coeff() must be the same |
- | size as one dimension as Mtx(). ie. n=3:DIM Mtx(n,n) |
- | as XRect, Vctr(n) as XRect, Coeff(n) as XRect |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Complex Number Linear System Solution #2 |
- | Example: XMtxCoeffA (MErr%, Mtx() AS XRect) |
- | Parameters: 1. Returns Non-Zero Value if Complex Nbr Arrays are |
- | not compatible or if matrix is singular. |
- | 2. Two Dimension Complex Nbr Array. Input. |
- | Coefficients of the equations of the system with the |
- | column vector entered into column n+1. The solution |
- | to the system of linear equations. is returned in |
- | column n+1. |
- | Notes: Array must be defined prior to use. The original |
- | matrix IS TRASHED !. This routine is faster than |
- | MtxCoeff because it makes no effort to preserve the |
- | original Complex Nbr Array or place the results in a |
- | seperate array. Complex Nbr Array Mtx() must be |
- | rectangular with one more column than rows n=3 : DIM |
- | Mtx(n,n+1) as XRect |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Duplicate Complex Number Matrix |
- | Example: XMtxCopy MErr%, Src() AS XRect, Dst() AS XRect |
- | Parameters: 1. Returns Non-Zero Value if Complex Nbr Arrays are |
- | not compatible. |
- | 2. Two Dimensional Complex Nbr Array. Source. |
- | 3. Two Dimensional Complex Nbr Array. Destination. |
- | Notes: Arrays must be defined prior to use. They may be |
- | either square or rectangular. |
- +-----------------------------------------------------------------------+
- "HIMATH" Library Routines for QuickBASIC (c)1991 Kevin T. Jorgensen
- Documentation Page 14
-
- +-----------------------------------------------------------------------+
- | Subroutine: Find Determinant of Complex Number Matrix |
- | Example: XMtxDet MErr%, XMtx() AS XRect |
- | Parameters: 1. Returns Non-zero value if Complex Nbr Array is |
- | singular. |
- | 2. Two Dimensional Square Matrix Complex Nbr Array. |
- | Notes: Determinant is returned as element 0,0 of the matrix. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Invert Complex Number Matrix |
- | Example: XMtxInv MErr%, A() AS XRect, Mtx() AS XRect |
- | Parameters: 1. Returns Non-zero value if Complex Nbr Array is |
- | singular. |
- | 2. Two Dimensional Matrix Complex Nbr Array To |
- | Invert. |
- | 3. Two Dimensional Matrix Complex Nbr Array To |
- | Receive Inverted Matrix |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Complex Number Matrix Scalar Product |
- | Example: XMtxMltS MErr%,A() AS XRect,B AS XRect,C() AS XRect |
- | Parameters: 1. Returns Non-zero value if Complex Nbr Arrays are |
- | incompatible. |
- | 2. Two Dimensional Matrix Complex Nbr Array To Scale. |
- | 3. Scalar |
- | 4. Two Dimensional Matrix Complex Nbr Array To |
- | Receive Scalar Product. |
- +-----------------------------------------------------------------------+
- +-----------------------------------------------------------------------+
- | Subroutine: Complex Number Matrix Cross Product |
- | Example: XMtxMltX MErr%,A() AS XRect,B() AS XRect,C() AS XRect |
- | Parameters: 1. Returns Non-zero value if Complex Nbr Arrays are |
- | incompatible. |
- | 2. Two Dimensional Matrix Complex Nbr Array. "A" |
- | 3. Two Dimensional Matrix Complex Nbr Array. "B" |
- | 4. Two Dimensional Matrix Complex Nbr Array To |
- | Receive Cross Product (AxB). |
- +-----------------------------------------------------------------------+